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ABSTRACT

A new procedure is presented, that calcu-

late the shape of focusing mirrors by
controlling the phase distribution of

Gaussian beams. The angle of incidence and

three of the four beam parameters ( beam

waist radii and focal lengths of the inci-

dent and reflected beam ) can be choosen

arbitrarily.

Fig. 1: The beam path of a focusing mirror

reflection at the lossy metallic surface

of a mirror are, in general small compared

to the dielectric losses in the material
of a lens. Since mirrors simultaneously

focus and bend the beam, compact folded

quasi optical systems can be constructed.

Focusing mirrors that are in common use

have an ellipsoidal shape, The beam waists
of the incident and the reflected beam are

located on the straight lines from the
center of the mirror to its two focal
points . An ellipsoidal mirror, however, is

only an approximation, that neglects the

phase characteristic of the Gaussian beam.

This paper presents a new method for

computing the optimal shape of focusing

mirrors that are not subject to the above

mentioned neglection.

2. DEFINITIONS
The term focusing mirror is used here

to mean a loss-free metallic reflector
that images an incident Gaussian beam with
a beam waist radius WO1 , into a reflected
Gaussian beam with a beam waist radius

W02 . The distances between the intersec-
tion points of the beam axes and the beam
waists are denoted as focal lengths F,
and F2. The angle between the beam axes is

2* Qi ( figure 1).

The shape of the mirror depends on: the

focal lengths (Fl ,F2 ), the beam waist

radii ( Wo, . w~~ ) and the angle of inci-

dence @i .

Considering only the fundamental Gaus-
sian mode ( TEMOO ), the following func-

tions are well known from Gaussian beam

theory (l).

The radii of the spherical phase fronts

are given by ( figure 2 ):

R(WO,X,~) =~[1+ (~)’]
(1)
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The beam radii are given by :

W(wo,h,<)=wo “[1‘ (*)21
(2),

Fig. 2: Beam parameter of a Gaussian beam

The amplitudes of the electric or magnetic

field strengths are proportional to the

function A :

A(wo, A,~, r)= ‘0
[

r2

“exp - W2(W0,A,<) 1(3).

w(wo,A,~)

The phase shift referred to the beam waist

is given by :

(4),

where ~ denotes the free space wavelength.

3. PHASE CONDITION AND AMPLITUDE CONDITION

To function properly, the mirror must

reflect the incident beam in a way that

the plane phase front at the beam waist of

the incident beam is imaged into a plane

phase front at the beam waist of the re-

flected beam. Referring to the phase shift

along the beam axes ( figure 3, r, = O,

r2
= O ) the phase condition is!

At the loss-free mirror surface, the

amplitudes of the field strengths of the
incident beam must equal the amplitudes of

the field strengths of the reflected beam.

Therefore, the amplitude condition is:

A[woq,)&(t),rJt)l =

A[wo2,A,z2(t), q~)l “U2
(6)

In this expression, L+ is a constant of
proportionality, that is considered later.

Fig. 3: Calculating the phase and ampli-

tude condition for a focusing mir-

ror

Both the phase condition equation (5)

and the amplitude condition equatiOn (6)
define mirror surfaces which, unfortuna-

tely, are different in general. If the am-

plitude condition is satisfied, the Huy-

ghens sources, which generate the reflec-

ted beam, have the proper amplitude but a

incorrect phase distribution. If, on the

other hand, the phase condition is satis-

fied, the Huyghens sources have an incor-

rect amplitude distribution but a proper

phase distribution. Hence, in general, it

is impossible for a reflector to transform

all of the incident energy into the de-

sired Gaussian mode for the reflected

energy.

Gaussian beams have a relatively smooth
change of their amplitude. Therefore phase

optimized mirrors normally causes rela-

tively small amplitude errors , that are

tolerable in practice provided that the

beam radii of the incident and reflected

beam are matched to each other. The method

used here for matching is to make the beam

radii equal at the center of the mirror,

This means:

WI =W(Wol, ~,F1) = W2 ❑ W(W02,X,F2) (7)

If w~, W02 ,~

(7) resuits in:
A are given, equation

F2=Woz

[

n’

1

@
W;l -w:’) +

(8)

2“ w;,
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If wO1, ~,F2> h are given, equation

(7) results in:

with:

~= (w;,lT)2+(A~)2
2( WO1.JT)2

(9).

A negative radicant in equations (8) or

(9) indicates that with the given beam pa-
rameters it is impossible to match the

amplitudes .

The proportionality constant from equa-

tion (6) can be calculated from the re-

quirement that at the center of the mirror

the incident beam and the reflected beam

must have equal amplitudes of their field

strengths . Therefore U2 yields:

u, =
WO1.W(W02,A,5)

w02. w(wol,A, ~)

(lo).

If the choosen beam parameters satisfy

equation (7) exactly, equation (10) sim-

plifies to:

u,= M
W02

(11).

On the other hand amplitude optimized

mirrors often cause very high phase errors

that easily exceed 180 degrees so that

these mirrors are not satisfactory (2).

4. CALCULATING THE SHAPE OF THE MIRROR

Fabrication of geometrically complex

mirrors is performed on a numerically con-

trolled milling machine. Therefore it is

appropriate to calculate the shape of the

mirror point by point. This means that for

a given Pair of coordinates ( [Y , Cz ) the
third coordinate Cx has to be calculated.
To do this the following procedure may be

used.

a) Match the beam radii at the center of
the mirror. Equation (8) is used to calcu-

late the focal length ~ for given beam

waist radii Wol , W02 and focal length ~

or equation (9) is used to calculate the

beam waist radius W02 for given beam waist

radius Wo, and focal lengths F, , F2 .

b) Calculate the proportionality cOn-
stant U2 using equations (10) or (11).

Select the pairs of coordinates

( :; , [, ). The mirror should be large
enough that a sufficent portion of the in-
cident energy falls upon the mirror .
Therefore the height h of the mirror ( z -
dimension ) is choosen to be:

h= S.w(wol,A,$)= S.W(W02,A,F2) (12)

and the width b of

mension, figure 1 )

b=

the mirror ( y . di-

is choosen to be:

h

Cosq (13).

The factor S determines the amount of
energy that falls upon the mirror. Usual
values for S are between 3 and 4. I.e if

S=3 more than 98.89 % of the incident
energy falls upon the mirror,

d) A computer program is used to calcu-

late the coordinate CX for every pair of

coordinates (Cy , C, ) such that equation
(5) is satisfied.

The coordinates of the incident beam

q(r) and _~l(~) that are associated with

the point C = (CX ,CY ,[, ) of the mirror
can be calculated as follows ( figure 3 ):

Point ~ in figure 3 is the point of in-
tersection between the plane:

;l.~-;l.~ = () (14)

and the straight line:

F=v.iiq (15).

The result is:

II
COS (Ii

~= (CXCOSO,+ Cy. sin@l). sin(l, (16).

o

Knowing ~ the coordinates can be calcu-

lated with:

l,(t)= F,--&,= F-& (17)

I

rl(f)=lb-~l (18).

.::
The coordinates r2(C) and ~2(L) of the

reflected beam can also be calculated
using equations (16), (17) and (18) pro-
vided that the following substitutions are

made:

r, + r, , ?l,+ 1, , Oi+-o,

e) Check the amplitude error. Since the

mirror surface is calculated to satisfy
the phase condition equation (5) the
amplitude error should be checked with
equation (6). Normally the amplitude error
grows with increasing distance from the
center of the mirror. On the other hand

the amplitude of the beam decreases ra-
pidly with increasing distance from the

center of the mirror, so that the ampli-

tude error remains tolerable in practice.



It is eviden% that these mirrors are

symmetrical with regard to the xy-plane . (1)
If in addition:

Wol = W02 and F, = F2
(19) (2)

then the mirro-cs are symmetrical with re-
gard to the xz-plane else. If 8, = O then

the mirrors are rotationally symmetrical

with regard to the x-axis.
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rors that image an incident Gaussian beam

into a reflected Gaussian beam. The angle

of incidence and three of the four quanti-

ties wol, Fl, wo2, ~ ( beam waist radii

and fo<.al lengths of the incident and the

reflected beem respectively ) can be choo-
sen arbitrarily. The remaining forth quan-

tity is computed so that the beam radii of
both beams are matched to each other at

the center of the mirror.

Although the method was developed for
the fundamental Gaussian mode it would

work for higher-order modes too if equa-
tions (3) and (4) are replaced by approp-
riate equations i.e. for TEM ~k modes
described in cylindrical coordinates

( r, +, ~ ) equation (3) would read:

A(wo, A,~, r,$] ❑ :.(+’.4’(2$)
(20)

()
.exp-$ cos(l.*-vo)

[[1
where Lm denote the generalized Laguerre

polynomials ( i.e. (3) ) and equation (4)

would read:

q3(wo,A,{,r)= -*Z -~2+
(21).

A“z

()
+ (2m+[+l)4arctan —

~ w:

Since only the fundamental Gaussian

mode is in common use in quasioptical mm-
wave techniques , mirrors for higher or-
der modes have not been examined by the

author .
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