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ABSTRACT

A new procedure is presented, that calcu-
latess the shape of focusing mirrors by
controlling the phase distribution of
Gaussian beams. The angle of incidence and
three of the four beam parameters ( beam
walst radii and focal lengths of the inci-
dent and reflected beam ) can be choosen
arbitrarily.

1. INTRODUCTION

Mirrors rather than lenses can be used
to compensate for the 1inherent growth of
the diameter of Gaussian beams (figure 1).
Compared to lenses mirrors give some ad-
vantages: Lenses cause losses due to the
reflections at the iInterface between alir
and dielectric material, with mirrors this
is not a problem. The losses caused by the
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Fig. 1: The beam path of a focusing mirror
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reflection at the lossy metallic surface
of a mirror are, in general small compared
to the dielectric losses in the material
of a lens. Since mirrors 'simultaneously
focus and bend the beam, compact folded
quasi optical systems can be constructed.

Focusing mirrors that are in common use
have an ellipsoidal shape. The beam waists
of the incident and the reflected beam are
located on the straight 1lines from the
center of the mirror to 1its two focal
points. An ellipsoidal mirror, however, is
only an approximation, that neglects the
phase characteristic of the Gaussian beamn.

This paper presents a new method for
computing the optimal shape of focusing
mirrors that are not subject to the above

mentioned neglection.

2. DEFINITIONS

The term focusing mirror 1is
to mean a loss-free metallic
that images an incident Gaussian beam with
a beam waist radius W , Into a reflected
Gaussian beam with a beam waist radius
Wy, The distances between the intersec-
tion points of the beam axes and the Dbean
waists are denoted as focal 1lengths F
and % . The angle between the beam axes is
2% Gi ( figure 1),

used here
reflector

The shape of the mirror depends on: the

focal 1lengths (F ,f ), the beam waist
radii (%1 , Wy, ) and the angle of inci-
dence 0, .

Considering only the fundamental Gaus-

sian mode ( TEMg4o ), the following func-
tions are well known from Gaussian beam
theory (1).

The radii of the spherical phase fronts
are given by ( figure 2 ):
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The beam radii are given by
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Fig. 2: parameter of a Gaussian beam

The amplitudes of the electric or magnetic

field strengths are proportional to the
function A
W 2
Alwg, A, 2, 1) = ——2—— . ex [-——_ (3.
0 Wi N3] Pl We g, A, 2]

The phase shift referred to the beam waist
is given by

(P(Wo,)\,l,l"): (4),

_2_n‘g ___rr
A ARlwg, A, 2)

where A denotes the free space wavelength.

+ arctan (—?{%)
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3. PHASE CONDITION AND AMPLITUDE CONDITION

To function properly, the mirror must
reflect the incident beam in a way that
the plane phase front at the beam waist of
the incident beam is 1imaged into a plane
phase front at the beam waist of the re-
flected beam. Referring to the phase shift
along the beam axes ( figure 3, 1 0,
r, = 0 ) the phase condition is:

Plwgy N, 24(C), 5 ()] + 9lwgy N, 4,(0), (001 =

w(wm:)\lﬁlo)"' LP(WOZI)\IFZIO) (5)
At the loss-free mirror surface, the
amplitudes of the field strengths of the
incident beam must equal the amplitudes of
the field strengths of the reflected beam.
Therefore, the amplitude condition is:

Alwy N, 2,(0), (€)1 =
Alwgy, N, 2,(0), (D)1 - U,

(6)

U, is a constant of
that is considered later.

In this expression,
proportionality,
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Fig. 3: Calculating the phase and ampli-
tude condition for a focusing mir-
ror

Both the phase condition equation (5)

and the amplitude condition equation (6)

define mirror surfaces which, unfortuna-

tely, are different in general. If the am-

plitude <condition 1is satisfied, the Huy-
ghens sources, which generate the reflec-
ted beam, have the proper amplitude but a
incorrect phase distribution. If, on the
other hand, the phase condition is satis-
fied, the Huyghens sources have an incor-
rect amplitude distribution but a proper
phase distribution. Hence, in general, it
is impossible for a reflector to transform

all of the incident energy 1into the de-
sired Gaussian mode for the reflected
energy.

Gaussian beams have a relatively smooth
change of their amplitude. Therefore phase
optimized mirrors mnormally causes rela-
tively small amplitude errors, that are
tolerable 1in practice provided that the
beam radii of the incident and reflected
beam are matched to each other. The method
used here for matching is to make the beam
radii equal at the center of the mirror.
This means:

wp = wWiwo M Fr) o= wy = wiwgg N Fp) (o)

If Wor , Wy , B , A are given, equation
(7) results 1in:
1
2 FZ ot
- ) 2 2 7 2 (8)
B = v, —>\‘z"(o1‘woz)+ Z
Wi



If W , F ., KB o, A equation

(7) results in:

are given,

1
ABV2 22
Wy = H:[Hz-(_l” ‘
T
with: (9.
H - (wh 1)+ (AR
- 2
2 (wpy-7)
A negative radicant in equations (8) or

(9) indicates that with the given beam pa-
rameters 1t is 1impossible to match the
amplitudes.

The proportionality constant from equa-
tion (6) can be <calculated from the re-
quirement that at the center of the mirror
the incident beam and the reflected beam
must have equal amplitudes of their field
strengths. Therefore U, yields:

W1 - WiWgg, A, B )

U, = (10).
, =
wop - Wiwgy A, R )
If the choosen beam parameters satisfy
equation (7) exactly, equation (10) sim-
plifies to:
W,
U= 2 (11).
o2
On the other hand amplitude optimized

mirrors often cause very high phase errors
that easily exceed 180 degrees so that
these mirrors are not satisfactory (2).

4, CALCULATING THE SHAPE OF THE MIRROR

Fabrication of geometrically complex
mirrors is performed on a numerically con-
trolled milling machine. Therefore it is
appropriate to calculate the shape of the
mirror point by point. This means that for
a given pair of coordinates ( (,, (, ) the
third coordinate (, has to be calculated.
To do this the following procedure may be
used.

a) Match the beam radii at the center of
the mirror. Equation (8) is used to calcu-

late the focal length £ for given beam
waist radii Wy , Wy, and focal length ﬁ
or equation (9) is used to calculate the

beam waist radius Wy
radius Wy and focal lengths F ,

for given beam waist

F

b) Calculate
stant U,

the proportionality con-
using equations (10) or (1l1).

c) Select the pairs of coordinates
¢ g , o). The mirror should be large
enough that a sufficent portion of the in-
cident energy falls wupon the mirror.
Therefore the height h of the mirror ( z
dimension ) is choosen to be:

h = S . W(WO1,)\,El) = SW(W02,>\,F2)

(125
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and the width b of the mirror ( y - di-
mension, figure 1 ) is choosen to be:
- h
cos 8, (13).
The factor § determines the amount of
energy that falls wupon the mirror. Usual
values for S are between 3 and 4. I.e if
S = 3 more than 98.89 % of the incident
energy falls upon the mirror.
d) A computer program is used to calcu-

late the coordinate
coordinates (Cy , G,
(5) is satisfied.

g for every pair of
) such that equation

The coordigates of the incident beam
q(Q and _;ﬂ[) that are associated with
the point C (C, ,Cy ,, ) of the mirror

can be calculated as follows ( figure 3 ):

Point D in figure 3 is the point of in-
tersection between the plane:

n-r-n;-C =0 (14)
and the straight line:
T=v-ny (15).
The result is:
cos 6;
D=(C-cos0 + C,-sin@) - |sin® | (16).
0
Knowing D the coordinates can be calcu-
lated with:
- D
@= f- = -—= an
& ' cos8; sin;
n(6) =10-C1 (18).
The coordinates QE) and Qﬁﬁ of the
reflected beam can also be calculated
using equations (16), (17) and (18) pro-

vided that the following substitutions are
made:

4> % . 8 »-0

Since the
satisfy

e) Check the amplitude error.
mirror surface is <calculated to
the phase condition equation (5) the
amplitude error should be checked with
equation (6). Normally the amplitude error
grows with increasing distance from the
center of the mirror. On the other hand
the amplitude of the beam decreases ra-
plidly with increasing distance from the
center of the mirror, so that the ampli-
tude error remains tolerable in practice.



It is evident that these mirrors are
symmetrical with regard to the xy-plane.
If in addition:

Wy, =Wy, and F = F (19)

then the mirrors are symmetrical with re-
gard to the xz-plane also. If O = 0 then
the mirrors are rotationally symmetrical

with regard to the x-axis.

5. CONCLUSION
The method presented in this paper is
able to compute the shape of focusing mir-
rors that image an incident Gaussian beam
into a reflected Gaussian beam. The angle
of incidence and three of the four quanti-
ties Wy , F , Wp , 5 ( beam waist radii
and focal lengths of the incident and the
reflected beam respectively ) can be choo-
sen arbitrarily. The remaining forth quan-
tity is computed so that the beam radii of
both beams are matched to each other at

the center of the mirror.

Although the method was
the fundamental Gaussian

developped for
mode it would

work for Thigher-order modes too if equa-
tions (3) and (4) are replaced by approp-
riate equations 1i.e. for TEM_, modes
described in cylindrical coordinates
(r, ¢, ) equation (3) would read:
Atwo A 2.0 = (7 L) L(”(Z—EE)-

[\ TRAYE-TAN W W m wz

(20)

. exp(—%) cos{ Ly -y,)

where U:
polynomials
would read:

denote the generalized Laguerre
( i.e. (3) ) and equation (4)

(21).

)\.
+ {2m+[+1 )~urc’ran(—g—)
Wl

0

Since only the fundamental Gaussian
mode is in common use in quasioptical mm-
wave techniques, mirrors for higher or-
der modes have not been examined by the
author.
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